International Association for the Study of Lung Cancer

IASLC-1

15th World Conference on Lung Cancer

October 77 - October 30, 2013

RICLE MASLE ORG

Welcome to WCLC 2013!

NEXT-GENERATION LUNG CANCER CARE

WCLC Akciğer Kanserinde Yeni Gelişmeler

Prof Dr Nil MOLİNAS MANDEL

Large panels of genes will be routinely tested in the future

Discovery of genomic alterations in lung adenocarcinoma

1984-2003

No known genotype KRAS

2004

2009 2013

EGFR TKI as standard first-line therapy for patients with *EGFR*-mut NSCLC

Study	Drug	n (<i>EGFR</i> mutation+)	RR (TKI vs chemotherapy), %	Median PFS (months)
IPASS ¹	Gefitinib	132	71.2 vs 47.3	9.8 vs 3.4
First-SIGNAL ²	Gefitinib	26	84.6 vs 37.5	8.0 vs 6.3
WJTOG 3405 ³	Gefitinib	86	62.1 vs 32.2	9.2 vs 6.3
NEJGSG002 ⁴	Gefitinib	114	73.7 vs 30.7	10.8 vs 5.4
EURTAC ⁵	Erlotinib	86	58.0 vs 15.0	9.7 vs 5.2
OPTIMAL ⁶	Erlotinib	82	83.0 vs 36.0	13.1 vs 4.6
LUX-Lung 3 ⁷	Afatinib	230	56.1 vs 22.6	11.1 vs 6.9

Mok TS, et al. N Engl J Med 2009;361:947–57; 2. Han J-Y, et al. J Clin Oncol 2012;30:1122–8;
 Mitsudomi T, et al. Lancet Oncol 2010;11:121–8; 4. Maemondo M, et al. N Engl J Med 2010;362:2380–8;
 Rosell R, et al. Lancet Oncol 2012;13:239–46; 6. Zhou C, et al. Lancet Oncology 2011;12:735–42;
 Sequist LV, et al. J Clin Oncol 2013;31:3327–34

Survival of Patients with Drivers: Targeted Therapy vs No Targeted Therapy

Crizotinib: A small molecule tyrosine kinase inhibitor of c-MET, ALK and ROS1

Co-crystal structure of crizotinib bound to c-MET

	IC (mM)	Colootivitu
Kinase	IC ₅₀ (nM) mean*	Selectivity ratio
c-MET	8	-
ALK	40-60	5-8X
ROS1	60	7X
RON	80	10X
AxI	294	34X
	322	37X
Tie-2	448	52X
Trk A	580	67X
Trk B	399	46X
Abl	1,159	166X
IRK	2,887	334X
Lck	2,741	283X
Sky	>10,000	>1,000X
VEGFR2	>10,000	>1,000X
$PDGFR\beta$	>10,000	>1,000X

Mini oral presentation by Dr Ou at WCLC 2013:

Programme number: MO07.03
Targeted therapies II, Bayside Auditorium B
Monday October 28th; 4:15 pm-5:45 pm

Cui JJ, et al. J Med Chem 2011;54:6342-63; Pfizer data on file

Customized Chemotherapy

Treatment assignment based on BRCA-1 and RAP80 mRNA level

- Advanced NSCLC
- Customized chemotherapy versus standard therapy
- N=279 patients
- Chemotherapy regimens
 - Cisplatin, docetaxel
 - Cisplatin, Gemcitabine
 - Docetaxel alone

"Detrimental effect in the experimental arm"

First analysis of toxicity and treament compliance in customized postoperative chemotherapy based on BRCA1 levels after NSCLC resection: SCAT (Spanish Customized Adjuvant Therapy) trial. Spanish Lung Cancer Group/GECP

- Attempt to optimize currently available chemotherapy.
- Hypothesis: BRCA1 modulates platinum sensitivity.
 - Low levels: plat sensitive
 - Intermediate: combine with taxane
 - High levels: nonplatinum

Results

- Feasibility established
- Lower BRCA1 levels for nonsquamous vs. squamous
- More toxicity for CDDP/Docetaxel

Customized Chemotherapy: Should it be Part of Standard Practice?

- No Survival benefit with ERCC1 and RRM1 based treatment assignment
 - Bepler et al, ASCO 2013
- French adjuvant trial was discontinued due to unreliability of ERCC1 assay
 - Soria et al, ASCO 2013
- Presently there is no role for routine testing for ERCC1, RRM1 or TS for selection of chemotherapy

Optimal Salvage Therapy for Wt-EGFR

PFS by Independent Assessment

Retesting for EGFR mutation by ARMS detected mutation in 32/108 specimens!

MEK Inhibition to Treat K-Ras Mutated NSCLC

K-Ras mutation is observed in approximately 25% of lung adenocarcinoma

Ongoing studies will evaluate combination of chemotherapy with MEK inhibitors for patients with K-Ras mutation

Crizotinib in ROS1+ NSCLC: A Phase 2 Study

Alectinib (CH5424802): A Novel ALK inhibitor

- A potent ALK inhibitor
- Sustained tumor regression in xenograft models
- Activity in crizotinib-resistant cell lines
- Phase 2 study in Japan documented response rate of 93% in crizotinib-naïve patients
 - Nakagawa et al, ASCO 2013

Alectinib in Crizotinib-Resistant ALK+ NSCLC

- N=47 patients
- 70% received > 2 prior regimens

Objective response rate 60%

Adverse events: Myalgia, fatigue, peripheral edema, elevated CPK, nausea and Photosensitivity (Grades 1/2)

Targeting PD-1/PDL-1

Nivolumab Phase 1 Study

Dose mg/kg	ORR** % (n/N)	Estimated Median DOR Weeks (Range)	Stable Disease Rate ≥24 Wks % (n/N)	Median PFS Months (95% CI)	Median OS Months (95% CI)
All	17.1	74.0	10.1	2.3	9.9
doses	(22/129)	(6.1+, 133.9+)	(13/129)	(1.9, 3.7)	(7.8, 12.4)
1	3.0	63.9	15.2	1.9	9.2
	(1/33)	(63.9, 63.9)	(5/33)	(1.8, 3.6)	(5.6, 11.1)
3	24.3	74.0	8.1	1.9	14.9
	(9/37)	(16.1+, 133.9+)	(3/37)	(1.7, 12.5)	(9.5, NE)
10	20.3	83.1	8.5	3.6	9.2
	(12/59)	(6.1+, 132.7+)	(5/59)	(1.9, 3.8)	(5.2, 12.4)

MPDL3290A: An Anti-PDL1- Antibody

PD-L1 Status (n = 53)	ORR*	PD Rate
IHC 3	83%	17%
(n = 6)	(5/6)	(1/6)
IHC 2 and 3	46%	23%
(n = 13)	(6/13)	(3/13)
IHC 1/2/3	31%	38%
(n = 26)	(8/26)	(10/26)
All patients (IHC 0/1/2/3 and 7 patients with diagnostic unknown; n = 53)	23 % (12/53)	40% (21/53)

- Tolerated well without dose-limiting toxicities up to 20 mg/kg
- 23% overall response rate
- PDL-1 expression is associated with higher response rate
- Median PFS not reached

Targeting PD-1/PDL-1

- Clear evidence of activity with three different therapeutic antibodies
 - Good tolerability
- Efficacy in both squamous and non-squamous histology
- Unclear if targeting PD-1 versus PDL-1 might result in variable efficacy
- Phase III studies are ongoing

Small Cell Lung Cancer

Targeted Agents Studied in SCLC

- Lack of efficacy with the addition of chemotherapy with
 - Anti-angiogenic agents
 - IGF-1R inhibitors
 - MMP inhibitors
 - Hedgehog inhibitors
 - HGF inhibitors
 - Statins
- Mirrors our experience in NSCLC before the advent of biomarker evaluation

Is IP Superior to EP for SCLC-ED?

Japanese patient population Noda et al, N Engl J Med, 2002 Western patient population Hanna et al, J Clin Oncol, 2006

IP in Korean Patient Population

- Response rate was higher with IP (62% vs. 48%)
- More anemia, nausea and diarrhea with IP

Pravastatin in SCLC

Rationale

- Statins are cytotoxic to SCLC in vitro
- Enhance efficacy of chemotherapy
- May have a role in prevention of cancer

SCLC
(LD/ED)
N=846 Pts

Randomize within 1
day of starting chemo

Pravastatin 40 mg/day X 2 Yrs Placebo Daily fpr 2 Yrs

Results

Bottom-line: Statins are effective lipid lowering agents!

Integration of Targeted Agents: E1508

 No improvement in efficacy with the addition of a hedgehog inhibitor or an IGF-1R antibody

Molecular Evaluation of SCLC

	11	HC .		IMPAC	T (N=26)
Sequeno m (N=32)	MG MT (N=2 5)	PTEN (N=2 4)	FISH (N=2 6)	Mutati ons	Amplifica tions
AKT1 E17 (N =1)	Loss (N=1 3)	Loss (N=1 9)	FGFR 1 (N=2)	TP53 (N=25)	EIF4BP1 (N=5)
PIK3CA E542K (N =1)				RB1 (N=21)	FGFR1 (N=4)
				MLL3 (N=10)	GOLPH3 (N=2)
				EPHA5 (N=8)	GNAS (N=2)
				ERBB4 (N=7)	MYC (N=2)
			1.	Notch1 (N=7)	SRC (N=2)

Aurora A Kinase Inhibition in SCLC

Alisertib (MLN8237)

- Small molecule inhibitor of Aurora A Kinase
- AAK is a critical mitotic regulator
- Single agent activity in solid organ and hemtological malignancies

Phase 2 cohort in S	CLC
N	48 pts
Median age	62
Prior lines of therapy	1- 52% 2- 48%
Response Rate	21%
Chemo-sensitive Chemo-refractory	19% 25%
Median PFS	2.11 m

Common AEs: Fatigue, Neutropenia, Diarrhea, Nausea, Stomatitis

Pazopanib in SCLC

- Setting: Second line therapy of SCLC
- Treatment: Pazopanib 800 mg/day
- N= 19 pts with sensitive relapse
- Response rate 21%
- Median PFS 3.6 m

SCLC: Take Home Messages

- Progress in the treatment of SCLC continues to be dismal
- Treatments based on molecular sub-typing are urgently needed
- The efficacy of IP regimen is restricted to the Japanese patient population
- Aurora kinase inhibitors are active and poised for further development

Adjuvant pazopanib or placebo in resected stage I NSCLC

- Pazopanib: small molecule inhbitor of VEGFR
- Feasibility study
- Not feasible due to poor compliance.

Arm	n	m (%)	95% Cl for 1
Pazopanib	32	12 (38%)	(21-56)
Placebo	32	28 (87%)	[71-96]
Pazopanib	32	22 (69%)	[50-84]
Placebo	30	28 (93%)	[77-99]
	Placebo Pazopanib	Placebo 32 Pazopaniti 32	Placebo 32 28 (87%) Pazopanib 32 22 (69%)

Dose 800 mg/d 53% [35-71]

Dose 400 mu/d 38% (21-56

13% [4-29]

Fatigue In Pazo arm.

GGT in Placebo arm

No toxic deaths

EGFR TKIs as Radiosensitizers

A randomised placebo-controlled multicentre phase II trial of erlotinib plus whole brain radiotherapy for patients with advanced nonsmall cell lung cancer with multiple brain metastases (TACTIC)

Neurological Progression-Free Survival (Fig 1) and Overall Survival (Fig 2) - ITT population

Results

- Fitteen patients (37.5%) from each arm were alive and without neurological progression 2.
- Median nPFS was 1.6 months in both arms; nPFS HR 0.95 (98% CI, 0.59-1.54; p=0.84).
- Median overall sunskal (OS) was 2.9 and 3.4 months in the placebo and eriotoib arms, HR 0.95 (MSS CL 0.58-1.55; p =0.83).
- Frequency of EGFR mutations was low with only 1 out of 35 (3%) petients with available samples had activeling EGFR-mutations.
- Grade 34 adverse event rates were similar between the two groups (70% in each arm), except for rash 20% infotinibit vs. 5% (placebo), and fatigue 17% vs. 35%.
- No significant QoL differences were found.

A phasell study of Icotinib and whole brain radiotherapy (WBRT) for Patients With Brain Metastases from NSCLC

Intracranial tumor response(Follow up to 15-09-2013)

	CR(%)	PR(%)	SD(%)	PD(%)	ORR(%)	mPFS (mo)	OS (mo)
N=20	5 (25.0)	11 (55.0)	3 (15.0)	1 (5.0)	16 (80.0)	7.0	15.0
95%CI					(60.8~99.2)	4.9~13.1	12.8~17.2

Progression free

Overall survival

MO07.11, Lee; M007.12, Yun

Brain Metastases

- The most common tumor in the brain is NSCLC.
- Major issue in terms of morbidity and mortality.
- Optimal management, timing of therapy etc remain unclear.
- Major site of relapse.
- Current questions:
 - Role of radiosensitizers
 - Value of current systemic therapies

Auth	Study	EGFR TKI	Treatment	N	WSRT (dose/ fraction)	RR	TTP.	OS	Toxicity
Lind (2009)	Phone I	Eriotinib Colort 1: 10kmg (ord) Calort 2: 13kmg (orT)	Enteriorite for 1 week + Concurrent RT + Maintenance	11	38 Gy (18 Fx)	45% 5 PR 2 SD	141 days	133 days	No G3 in cohort 1 1 G3 rash, 1 G3 fatigue in cohort 2
Ma (2009)	Phase	Gufflinb 250mg/d	Gefitinib 250regit With concurrent WERT	21	40Gy	81%	10m	13m	Rash, diarrhea mostly Grade
Pesce (2012)	Rando mized phase II	Guffdrab Vs. Turnspotenti de	Geffinib 250m/d With concurrent WBAT Vs TMZ 75mg/m2 for 20 days	59 (G:16) (T:43)	30 Gy			4.9 M G.6.3 M T. 4.9 M	No toxicity
Welsh (2013)	Phase 1	Erlotinib 150mg	Existinibitor 1 week 	40	35 Gy 2.5Gylda y	86%	PFS for CNS E.2 M	11.8 M	4 G3 rash No increased neurotoxicity
							EGFR MT.5.3m EGFR M=: 12.3 m	EGFR wild; 8.5m (ord) EGFR mutant: 18.1m (ord)	

EGFR TKI (Afatanib) and CNS Metastases

Retrospective analysis
 of the value of
 chemotherapy or
 afatanib in patients
 treated on the LUX-lung
 3 study.

MO07.13, Schuler

Clinical Experience with crizotinib in patients with advanced ALKrearranged NSCLC and brain metastases (PROFILE 1005, 1007)

 Retrospective study to evaluate the activity of crizotinib in CNS.

- No difference in outcomes.
- CNS remains the dominant site of acquired resistance with the development of new lesions, regardless of whether patients presented with CNS disease

Crizotinib in patients with advanced ALK-positive NSCLC and brain metastases

- Retrospective analysis of patients with (n=275) or without (n=613)
 brain metastases from PROFILE 1005 and PROFILE 1007
- Clinical outcomes:
 - Intracranial DCR at 12 weeks: ~60%
 - Intracranial CRs: 11/275 (4%)
 - Intracranial target lesion ORR (patients with ≥1 brain metastasis;
 10/40): 25%
 - Systemic ORR (all patients with brain metastases at baseline): 49%
- Among patients with no detectable brain metastases at baseline:
 - 9% developed symptomatic brain metastases after starting crizotinib treatment

Intracranial CR with crizotinib

Before treatment

After 6 weeks of treatment

Courtesy of J-Y Han, National Cancer Center, Goyang, South Korea

Mini oral presentation by Dr Costa at WCLC 2013:

Programme number: MO07.02
Targeted therapies II, Bayside Auditorium B
Monday October 28th; 4:15 pm–5:45 pm

Comments

- No advantage to adding EGFR TKI to radiotherapy.
- Not surprisingly, the drugs treat CNS metastases.
- Interestingly, the CNS remains a major site for progression.

Adjuvant Chemotherapy in 2013 State of the art

- Standard : Cisplatin based chemotherapy
- Standard : Stage II-IIIA
- Option : IB (>4 cm recommended)
- Option : carboplatin
- Criteria
 - <75 yrs</p>
 - <2 months after surgery
 - PS 0-1
 - No post-operative complications
- No established role for targeted therapies (erlotinib, gefitinib, bevacizumab)!

Class	Agent	Biomarkers	Robustness
- Relevant P	edictive Bioma	rkers and NSCL	
Cytotoxic drugs	Cisplatin	ERCC1 RRM1 BRCA1	+
	Gemcitabine	RRM1	+
	Pemetrexed	FPGS TS	-+
	Paclitaxel	MAPtau Beta-tubulin III	+
Targeted therapies	Erlotinib	EGFR mutation FISH EGFR K-Ras wt RASSF1A / 9pLOH	+++ + +
	Bevacizumab	circulating VEGF	-
	PF-02341066	EML4-ALK	+++

A phase 2 study of the GI-4000 KRAS vaccine following curative therapy in patients with stage I-III lung adenocarcinoma harboring KRAS G12C, G12D, G12V or G12R mutation

- K-ras is the most common mutation in nonsquamous carcinoma.
- Immunotherapeutic directed against the most common abnormalities.
- Feasible, favorable outcome compared to matched controls.

Characteristic	GI 4000 (N=24)	Matched Group (N=64)	
Male sex	7 (29%)	21 (33%)	
Age at diagnosis - Median yrs	63	66	
Pathological Stage	12 8 7	42 2 20	
Recurrence free survival per year 1 2 3	86% 68% 60%	85% 71% 69%	
Overall survival per year 1 2 3	100% 100% 92%	93% 88% 83%	
Hazard ratio for survival (p-value)	0.58 (0.29)*		

MO08.04: Adjuvant GI-4000 KRAS vaccine

- Phase 2 feasibility and immunogenicity study
- Population: 24 pts with a KRAS mutation
- P Stage I-III
- 50% developed a new (9/13) or increased (3/6) immune response
- HR for survival : p = .58

Randomized controlled phase III trial of adjuvant chemoimmunotherapy with activated killer T cells and dendritic cells in patients with resected primary lung cancer

Kaplan-Meier estimates of overall survival for group A and B.

MO08.07 Kimura

Phase II randomized, open-label study of ramucirumab (IMC-1121B) in combination with first line platinum based chemotherapy: Results from non-squamous patients Doebele et al.

- Ram is a fully human monoclonal antibody (IgG1) vs. VEGFR2.
- Success in gastric cancer, but failed in phase III breast cancer study (press release 9.26.2013)

Efficacy Results

Drug-related Adverse Events Reported in >15% of Patients in Either Arm

Adverse Event	Arm A (NHB), n. (%)		Arm 9 (9147), n, (%)			
	All Grades	Grade 22	All Grades	Grade 23	Related to Ramochumal	
					All Grades	Grade (1)
Fallerta WIS-21 TEAE	10 (913)	39 (94.5)	67 (100)	AP (10.1)	54 (80.6)	34 (80.7)
Felgue	47 (39.4)	12 (17.4)	41 (81.2)	0 (11.6)	34 (86.7)	A(NI)
Named	35 (50.7)	3/8.25	34 (50.7)	550	32 (33 8)	A (6.2)
Anemia	36 (53.3)	12 (17.0)	29 (40.3)	0 (11.8)	15 (16.4)	3 (4.5)
Neutroperse	16 (25.2)	13 (18.8)	24 (35.8)	14 (20.9)	8 (11.0)	\$ (7.5)
Tromborytopenia	17 (24.6)	14 (20.3)	23 (34.3)	17 (25.4)	5 (7.8)	4(6.0)
Decreased appeals	17 (24.6)	1 (1.4)	20 (29.6)	2 (3.0)	17 (25.4)	200
Usunling	21(00.4)	1 (1.4)	19-08-0	4 (5.0)	13 (19.4)	3 (4.0)
Dartes	16 (29.2)	10.49	12 (17.8)	1(1.8)	4 (6.0)	000
Dynaminia	6 (7.2)	0.000	12 (17.0)	8-95-85	7 (10.4)	0.95.85
Hyperfereion	2 (2.8)	1 (1.4)	12 (17.4)	8-(0.0)	12 (17.8)	0.(9.25)
Episton	3 (4.3)	0 (0.0)	11 (16.4)	2 (5.0)	F(13.4)	0.00.00
Constputor	14 (29.30	4.00	9,013.45	100	4 (8.0)	9 (0.0)

Targeting the VEGF Pathway

E1505: Phase III Adjuvant Chemotherapy +/- Bevacizumab

Resected IB≥4cm–IIIA No planned XRT

N = 1500

R

Chemotherapy* x 4 cycles

Chemotherapy* x 4 cycles + bevacizumab x 1 year

*Specified regimens

- Cisplatin and docetaxel
- Cisplatin and vinorelbine
- Cisplatin and gemcitabine

Primary endpoint: overall survival

MO08.05: Adjuvant Endostar (A recombinant human endostatin) in resected NSCLC

Phase II/III randomized study Stratified by gender, stage, histology

Objective: DFS

Adjuvant Chemotherapy in 2013 Conclusion / Challenges

- Customized therapy
 - Micrometastatic disease different from stage IV?
 - Role of –omics ?
- Unvalidated agents in the metastatic setting
 - Reluctance from community
- Alternative approaches
 - Effect on tumor ? Host ?
 - Local treatment
- Pattern of relapse
 - Customize the follow-up?

Gelişmeleri izlemek için 8-11 Mayıs 2014 KONGREMİZE BEKLİYORUZ Predictors of trimodality therapy use and overall survival in patients with stage III non-small cell lung cancer (NSCLC) in the National Cancer Database

Mary Jo Fidler, MD¹, Michael J. Liptay, MD², Philip Bonomi, MD¹, David J. Sher, MD, MPH³

Rush University Medical Center, Chicago, IL

- (1) Department of Medical Oncology
- (2) Department of Cardiothoracic Surgery
- (3) Department of Radiation Oncology

RESULTS

- Three and 5-year overall survival probabilities were
 17% and 9.6%, respectively
- Number of surgeries decreased from earliest to most recent cohort (9.9% vs 7.2% p<0.0001)
 - Frequency of pneumonectomy decreased, 24% of surgeries (earliest) vs. 14% (most recent cohort) p<0.0001
- On univariable analysis, TMT was associated with a significant survival advantage (median 26 vs 12 months, p < 0.0001)
- On multivariable regression, TMT was persistently associated with improved survival (HR 0.49), also maintained after propensity matching (HR 0.49)
 - In subset Cox regression in patients treated between 2003-2005, in which there was a comorbidity variable, TMT was still significant (HR 0.52)
 - Survival advantage also seen after pneumonectomy

CONCLUSIONS 1

- In this large national database, TMT was associated with a significant survival benefit
- TMT was associated with superior survival in multivariate analyses, in a sensitivity analysis in a cohort with co-morbidity scores, and after propensity matching
- TMT remains a valid treatment paradigm for locally advanced non-small cell lung cancer

CONCLUSIONS 2

- TMT was not commonly implemented across CoCaccredited programs.
- Measures often associated with higher socioeconomic status were statistically significant predictors of TMT.
- The academic nature and volume of the facility strongly influenced TMT, suggesting more aggressive practice patterns in university-based, high-volume institutions.