A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small-cell-lung cancer patients

Clin Cancer Res Published OnlineFirst May 1, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-1674

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/05/01/1078-0432.CCR-13-1674.DC1.html

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
“A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small-cell-lung cancer patients”

Saily Alfonso 1†, Anet Valdés-Zayas 2†, Eduardo R. Santiesteban 3, Yoanna I. Flores 4, Fernando Areces 4, Maurenis Hernández 2, Carmen E. Viada 1, Ivis C. Mendoza 5, Pedro P. Guerra 5, Elena García 5, Ramón A. Ortiz 1, Ana V de la Torre 1, Meylán Cepeda 1, Kirenia Pérez 2, Eric Chong 2, Ana María Hernández 2, Darien Toledo 2, Zuyén González 2, Zaima Mazorra 2, Tania Crombet 5, Rolando Pérez 2, Ana María Vázquez, and Amparo E. Macías 2*.

1 Celestino Hernández Robau Hospital, Villa Clara, Cuba.
2 Center of Molecular Immunology, Havana, Cuba.
3 José R. López Tabranes Hospital, Matanzas, Cuba.
4 National Institute of Oncology and Radiobiology, Havana, Cuba.
5 National Coordinating Center of Clinical Trials, Havana, Cuba.

† Both authors contributed equally to this work.

Running title: Racotumomab-alum as switch maintenance therapy in NSCLC

Keywords: idiotype vaccine, maintenance therapy, non-small-cell lung cancer, cytotoxic antibodies, clinical trial

Financial support: Financial support for the study was supplied by The Center of Molecular Immunology

Correspondence to:
* Dr. Amparo E. Macías, Department of Clinical Investigations; Center of Molecular Immunology; 216 St and 15 Ave.; Atabey, Playa; Havana 11600 Cuba; Tel.: +53-7-2713146; Fax: +53-7-2720644; Email: amparo@cim.sld.cu

Disclosure of Potential Conflicts of Interest: No conflicts to declare by all authors.

Statement of Translational Relevance: 156 Words

Abstract: 250

Word Count: Text 4657 (Introduction through Results/Discussion inclusive of headers and references within parentheses); 4 Figures, 2 Tables, 2 Supplementary Figures and 5 Supplementary Tables
Abreviations: Non-small cell lung cancer (NSCLC); overall survival (OS); progression-free survival (PFS); complete response (CR); partial response (PR); stable disease (SD); monoclonal antibody (mAb); idiotypic antibody (Ab1); anti-idiotypic antibody (Ab2); Neu-glycocolyl sialic acid (NeuGc); cytidine-monophosphate-N-acetyl-neuraminic acid hydroxylase (cmah-kd); American Tissue Type Culture Collection (ATCC); Dulbecco’s modified Eagles medium (DMEM); D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP); phosphate buffered saline (PBS); Eastern Cooperative Oncology Group performance status (ECOG PS); central nervous system (CNS); human immunodeficiency virus (HIV); optical density (OD); coefficient of variation (CV); bovine serum albumin (BSA); propidium iodide (PI); Hazard ratio (HR); confidence interval (CI).

Translational Relevance

In advanced NSCLC, there have been few improvements in outcome after first-line chemotherapy since new combinations of cytotoxic drugs have not enhanced the results obtained just with platinum doublets. Thus, the development of new more effective targeted strategies continues to be a priority. Here, we present the clinical and immunological results from a randomized study of racotumomab-alum vaccine, targeting NeuGcGM3 ganglioside, as switch maintenance therapy in advanced NSCLC patients. A clinical meaningful improvement in overall survival (OS) and progression free survival (PFS) for racotumomab-alum versus placebo is showed. The capacity of IgM anti-NeuGcGM3 antibodies to bind 30% or more of NeuGcGM3-expressing L1210 cells and to kill that percentage of cells was associated with longer OS. To our knowledge, this is the first report showing an association between the active induction of cytotoxic NeuGcGM3-specific antibodies and the clinical outcome of NSCLC patients treated with racotumomab-alum vaccine.
Abstract

Purpose: Racotumomab is an anti-idiotype vaccine targeting the NeuGcGM3 tumor-associated ganglioside. This clinical trial was conducted to provide a preliminary estimate of efficacy and safety of racotumomab as switch maintenance for advanced NSCLC patients.

Experimental design: Patients with stage IIIb/IV NSCLC who have at least stable disease after first-line chemotherapy were randomized 1:1 to racotumomab-alum (5 immunizations every 2 weeks and re-immunizations every 4 weeks) or placebo. Treatment was administered beyond progressive disease, until severe performance status worsening or toxicity. At progression, only 5 patients per group, received further anti-cancer therapy. The primary endpoint was overall survival (OS).

Results: One-hundred and seventy-six patients were randomized to racotumomab-alum (n=87) and placebo (n=89). Median OS was 8.23 months and 6.80 months, respectively (HR 0.63; 95% confidence interval (CI) 0.46-0.87; p=0.004). Median progression-free survival (PFS) in vaccinated patients was 5.33 months versus 3.90 months for placebo (HR 0.73, 95% CI 0.53-0.99; p=0.039). The most common adverse events in the racotumomab-alum arm were burning and pain at the injection site, bone pain and asthenia. A high antibody response of IgM and IgG isotype against the NeuGcGM3 ganglioside was obtained. Hyper-immune sera were able to specifically recognize and kill the NeuGcGM3-expressing L1210 cell line. Patients that developed anti-NeuGcGM3 antibodies capable to bind and kill \(\geq 30\% \) L1210 cells showed longer median survival times.

Conclusions: Switch maintenance with racotumomab-alum is an effective and well tolerated treatment option for advanced NSCLC patients.
Introduction

Lung cancer is the most common cause of cancer-related death worldwide [1]. Non-small cell lung cancer (NSCLC) constitutes the predominant histological type among the lung neoplasias, representing more than 75% of all lung tumors. A high percentage of the patients are diagnosed at locally advanced stage or with metastatic disease [2]. Unfortunately, little progress has been achieved in the overall survival of advanced NSCLC patients after first-line chemotherapy, since various chemotherapy combinations have not improved the results obtained with platinum doublets [3].

Recently, the role of maintenance treatment for advanced NSCLC patients with favorable response [complete response (CR), partial response (PR) or stable disease (SD)] after first-line chemotherapy has been evaluated by an international group of experts. Based on the available evidence, the expert panel agreed that maintenance therapy represents a treatment option in advanced NSCLC, in any of its modalities: continuation or switch, the latter with a different chemotherapy or targeted agent [4]. Most trials showed significant prolongation of progression free survival (PFS) [5-14], while some studies also showed extension of the survival (OS), particularly after the use of pemetrexed and erlotinib [6, 7, 9, 14, 15].

Active immunotherapy is one of the most promising fields in cancer research and several strategies have been pursued to design cancer vaccines. One approach to generate an effective immune response against tumor-associated antigens, involves the use of anti-idiotypic monoclonal antibodies (Ab2 mAb). Anti-idiotypic antibodies have proved to mimic the nominal antigens and induce antigen-specific responses, even against non-protein tumor associated antigens like gangliosides [16, 17].
Neu-glycolyl (NeuGc)-containing gangliosides are attractive targets for immunotherapy. These glycolipids are not present in the cytoplasmatic membrane of humans [18], after a 92 bp deletion in the gene that encodes the cytidine-monophosphate-N-acetylneuraminic acid hydroxylase (cmah), which catalyzes the conversion of N-acetyl to NeuGc sialic acid [19, 20]. However, NeuGc-containing gangliosides have been detected in several human tumors, including NSCLC [21-24]. NeuGcGM3 is besides a potent immunosuppressive molecule [25].

We previously reported a vaccine preparation composed by a murine anti-idiotype mAb that mimics NeuGcGM3 ganglioside. This Ab2, named 1E10 and later racotumomab [26] was generated from immunizing BALB/c mice with P3 mAb, an Ab1 antibody that recognizes NeuGc gangliosides [27-30]. Racotumomab vaccine was able to generate a strong antitumor activity in mice bearing melanoma or breast carcinomas [26] and to induce anti-metastatic effect in 3LL-D122 Lewis Lung carcinoma, a poorly immunogenic and highly metastatic murine model in C57BL/6 mice. Therapeutic effect was associated with an increase of T cells infiltrating the metastases, a reduction of blood vessels and an increase of apoptotic cells in the lung metastases [31]. Three different toxicology studies evaluating acute toxicity, repeated toxicity and local tolerance were done. A mutagenic study was also performed. Racotumomab demonstrated to be safe and non-mutagenic.

Several phase I trials using racotumomab-alum vaccine were conducted in patients with advanced melanoma, breast and lung cancer. Vaccine was safe and immunogenic since high antibody response to NeuGcGM3 was detected in vaccinated patients [28-30, 32, 33]. In addition, NeuGcGM3 specific IFN-γ-secreting T cells were detected by ELISPOT in breast cancer patients, vaccinated with racotumomab [34]. Although these studies were not designed to evaluate the therapeutic efficacy of the vaccine, a prolonged survival was observed in several
patients. In particular, encouraging results were obtained when racotumomab-alum vaccine was evaluated in NSCLC patients [30]. A strong IgM and IgG antibody response against NeuGcGM3 was elicited in advanced NSCLC patients. Patient’s hyper-immune sera were able to specifically recognize and induce cell death of the NeuGcGM3-expressing X63 myeloma cells. Remarkably, patients that developed IgM or IgG antibodies against NeuGcGM3 showed longer median survival time [33].

To assess the efficacy and tolerability of switch maintenance therapy with racotumomab-alum in advanced NSCLC patients, we conducted this randomized, double-blind, placebo-controlled phase II/III clinical trial.

Patients and Methods

Patient's selection

Eligible patients were 18 years or older, with histo or cytologically confirmed stage IIIB–IV NSCLC (6th edition AJCC staging system), who had achieved CR, PR or SD after the standard first-line therapy. Random assignment, 87 patients in the vaccine group and 89 in the placebo group, was performed at least 28 days after completing first-line treatment, but within 2 months. All patients had measurable disease, an Eastern Cooperative Oncology Group performance status (ECOG PS) ≤ 2 [35], adequate renal, hepatic and haematological functions.

Exclusion criteria included patients who had received immunotherapy or other investigational drugs, patients with known hypersensitivity to any component of the formulation, patients that were pregnant or lactating, patients with uncontrolled chronic diseases, history of severe allergic reactions, patients with brain metastases or other primary neoplastic lesion, patients with active infections, symptomatic congestive heart failure, unstable angina, cardiac arrhythmia or
psychiatric disorders, patients receiving systemic corticosteroids at the time of inclusion and patients with positive serology for Hepatitis B, C or HIV.

Study design

This double-blinded, placebo-controlled clinical trial was conducted at 3 hospitals from Villa Clara, Matanzas and Havana, Cuba. Sample size was estimated considering that 160 patients, or 103 events, would achieve 81% power to detect a hazard rate of 0.56 when the proportions of survivors in each group are 0.25 and 0.46 at a significance level of 0.05, using a two-sided log rank test. A 10% patients’ lost was anticipated and accordingly, the final sample size was 176 patients. The projected accrual period was 3 years. An interim analysis on futility was planned when 52 events occurred. The primary objective was to evaluate the effect of racotumomab-alum vaccine in overall survival (OS) of advanced NSCLC patients. The secondary objectives were to evaluate progression free survival (PFS), immunological response and safety.

Eligible patients were randomized 1:1 to receive racotumomab-alum (group A) or placebo (group B). Randomization was not stratified but it was balanced according to gender, clinical stage, performance status, race and response to first-line treatment.

Patients were injected intradermally, and received 15 doses of 1 mg of racotumomab-alum or placebo. The induction phase consisted on 5 doses, administered every 2 weeks. After induction, patients were vaccinated every 4 weeks, for one year (10 doses). After treatment was completed (15 doses of vaccine or placebo), the blinding was opened, and only patients in the racotumomab arm continued vaccination every 4 weeks, even beyond progression. Criteria for stopping vaccination included voluntary withdrawal, unacceptable toxicity or severe worsening of the patient’s performance status. Patients who discontinued study treatment were followed until death, or study termination. Concurrent antitumor therapy was not permitted.
An independent CRO (CENCEC) was responsible for conducting the study. Treatment allocation was done using the automatic MINIM system. To balance both study groups, the investigator provided the information on patient sex, race, clinical stage, performance status and response to first-line treatment before randomization. The trial was blinded and the investigational drug and placebo had the same organoleptic characteristics and were presented in the same primary and secondary containers. A sealed letter enclosing the information of the treatment group was sent together with the investigational product. Information on treatment was disclosed only after completing 15 doses or in case of severe or serious adverse events.

The trial was approved by the local ethic review boards and the Cuban Regulatory Agency. All patients provided written informed consent before study participation. The trial was conducted in accordance to the principles of the Declaration of Helsinki and Good Clinical Practice guidelines. It is registered at the Cuban Registry of Clinical Trials (www.registroclinico.sld.cu; ID: RPCEC00000009).

Efficacy assessments

Overall survival was defined as the time elapsed from randomization to death from any cause. PFS was calculated from the date of randomization up to the date of documented progression or death from any cause.

Patient assessment was performed at baseline and every 4 weeks. Baseline evaluation included medical and smoking history, physical examination, vital signs, PS, complete blood cell count and blood biochemistry. Toxicity was evaluated according to the Common Terminology Criteria for Adverse Events (version 3.0), by physical examination and clinical laboratory tests, performed during treatment and follow-up. Tumors were measured by X-rays and CT-scans at baseline and then, every 3 months. The Response Evaluation Criteria in Solid Tumors (RECIST
1.0) guideline [36] was used to classify tumor response. After disease progression, patients could receive any subsequent therapy at the discretion of the treating physician.

Anti-idiotype racotumomab mAb

Active drug was composed by the anti-idiotype antibody racotumomab, alum hydroxyl gel, mono and di-basic sodium phosphatase salt, sodium chloride and water for injection. The placebo had the same composition excluding racotumomab. Racotumomab mAb was purified from mouse ascites and the aluminum hydroxide-precipitated vaccine was produced according the Good Manufacturing Practice guidelines. The manufacturing process was certified by the Quality Control Department of the Center of Molecular Immunology (CIM).

Ganglioside and tumor cell lines

NeuGcGM3 ganglioside was purified from horse erythrocytes as described previously [37] and was provided by Dr. Carr (CIM, Havana, Cuba). The L1210 murine lymphocytic leukemia cell line, expressing high levels of NeuGcGM3 ganglioside [38, 39], was obtained from the American Tissue Type Culture Collection (ATCC). L1210 cells deficient of NeuGc sialoconjugates (L1210 cmah-kd), were generated at CIM, as previously explained [40]. Cells were grown in DMEM/F12 medium (Gibco-BRL, Paisley, UK) supplemented with 10% of heat inactivated fetal bovine serum (FBS) (Gibco-BRL, Paisley, UK), 2mM L-glutamine, 25 mM Hepes, penicillin (100 µg/mL) and 100 µg/mL of streptomycin (Invitrogen) and maintained at 37°C with 5% CO₂.

Measurement of antibody response

The trial goal was to evaluate the immune response in 30% of the subjects (53 vaccinated and placebo patients). However, 6 of the 53 patients did not complete the vaccine induction period (5
doses), or did not have at least 3 serial serum samples. Consequently, the immunological assessment was done in a cohort of 47 patients, 24 vaccinated and 23 controls.

The antibody response against racotumomab mAb and the purified ganglioside NeuGcGM3 was determined by a solid-phase ELISA, as formerly reported [28]. The inverse of the highest serum dilution giving optical density (OD) values ≥ 0.25 and twice the value of the pre-immune serum was considered as the antibody titter. Assays were performed in triplicate for each sample and the coefficient of variation (CV) was less than 15%. The optical densities (OD) of the blanks were less than 0.1.

Antibody binding assay by flow cytometer

The detection of antibodies binding to wild type and mutated L1210, in patients’ sera was performed as reported before [41]. L1210 cells were blocked in PBS containing 1% BSA for 20 min on ice. Patients’ serum samples, corresponding to pre-immune and hyper-immune sera from 2 to 6 months of treatment, were diluted 1/10 and incubated with 10^5 cells for 30 min on ice. After washing with cold PBS, the cells were incubated for 30 min on ice, with FITC-conjugated goat anti human IgM or FITC-goat anti human IgG conjugated antibodies (Jackson ImmunoResearch Laboratories). Percentage of positive stained cells was determined in a FACScan flow cytometer (Becton Dickinson, San Jose, CA). The FlowJo program (version 5.7.2) was used to analyze a total of 10^4 cells acquired on every FACS assay. Positive patients had a binding percent ≥20%, after subtracting the pre-immune to the hyper-immune recognition percent. The L1210 cmah-kd cell line, deficient of NeuGc sialoconjugates [40] was used as control of the antibody specificity for the NeuGcGM3 ganglioside.

Induction of cell death
The lytic capacity of patients’ sera was tested by incubating the 1/5 diluted sera with 10^5 tumor cells in DMEM/F12 medium supplemented with 1% FCS, in 5% CO2 atmosphere at 37°C, for 3h [33, 39, 41]. Cell death percent was determined by flow cytometry after the addition of propidium iodide (PI, Sigma-Aldrich, St. Louis, MO), at a final concentration of 10 μg/ml. The cytotoxicity was considered positive when the percentage of dead cells was ≥ 20%, after subtracting the pre-immune to hyper-immune percent.

To determine if the binding and cytotoxic effect of serum was specifically mediated by anti-NeuGcGM3 antibodies, L1210 cmah-kd cells and L1210 cells cultured with 10 μmol/L of D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP; Matreya, LLC, PA), an inhibitor of glucosylceramide synthetase, [40] were used.

Statistical analyses

For the analyses of OS and PFS, median values and 95% CI were estimated by Kaplan-Meier methodology, and two-sided log-rank tests were used to compare treatment groups. A secondary analysis of OS was performed using the Cox’s proportional-hazards regression model to determine the effect of treatment in different subgroups. This analysis included age, sex, ethnic origin, tumor stage, histology, smoking history, race, ECOG, response to first-line treatment and the immunological variables. Chi-squared and Fisher’s tests were used for evaluating distribution differences between groups. Wilcoxon test was employed as a non-parametric test for matched-pairs signed-ranks test. Statistical analyses were done with SPSS program (version 17.0).

Results

Patient characteristics

From September 27, 2006 to June 28, 2010, 176 patients were randomized: 87 to racotumomab-alum and 89 to placebo (Supplementary Fig. S1). Thus, 176 patients were included in the
intent-to-treat efficacy analysis. One patient, with histologically unconfirmed NSCLC randomized to racotumomab-alum group did not receive treatment and was excluded from the safety analysis. Demographic and baseline characteristics were similar in both groups (Table 1).

All patients received platinum-based regimens as first-line chemotherapy. These regimens included vinblastine or etoposide combined with cisplatin or carboplatin. One hundred sixty-nine patients (169, 98.3%) received 4-6 chemotherapy cycles as first-line treatment and only 3 patients (1.7%) received less than 4 cycles (1 patient from the vaccine group and 2, from the placebo arm). As part of the first-line treatment, 50 vaccinated patients (57.5%) and 51 patients (57.3%) from the placebo group received radiotherapy.

All patients included in the trial achieved SD, PR or CR after first line therapy and were randomized between 4 to 8 weeks after completing treatment, with a median of 1.51 months (vaccine) and 1.43 months (placebo). Median time from randomization to start racotumomab or placebo was 0.46 and 0.43 months, respectively.

After interrupting vaccine or placebo, 5 patients per group (5.6 % of all enrolled patients), received further anti-cancer therapy. Due to treatment unavailability, only 1 patient from the placebo arm, received docetaxel, one of the recommended drugs for second line therapy in NSCLC. The remaining 4 patients in the placebo cohort received carboplatin (2 patients) or etoposide (2 patients). On the other hand, 4 patients from the racotumomab arm received new cycles of carboplatin while 1 subject was treated with cisplatin/vinblastine.

Efficacy

The intent-to-treat median OS was 8.23 months (95% CI 5.59-10.87) for the racotumomab-alum group vs. 6.80 months (95% CI 5.77-7.83) for the placebo group. This difference was statistically significant (HR 0.63, 95% CI 0.46-0.87, p=0.004) (Fig. 1A). Ten patients from the
racotumomab arm and 2 patients from the placebo cohort were alive at the moment of the analysis and were consequently censored. The 1- and 2- year survival rates were 40.2% and 18.4% for the racotumomab-alum group compared with 22.5% and 6.7% for the placebo group. Almost all patient subgroups benefited from therapy. Remarkably patients with stage IIIB NSCLC derived a larger benefit as compared to stage IV (Supplementary Fig. S2).

Vaccinated patients also had a statistically significant advantage in PFS (HR 0.73, 95% CI 0.53-0.99; p=0.039) (Fig. 1B). Median intent-to-treat PFS was 5.33 months (95% CI, 3.48-7.19) in the racotumomab-alum group vs. 3.90 months (95% CI, 3.53-4.27) in the placebo group. Seven and 2 patients from the racotumomab and placebo arms, respectively, have not progressed at the moment of this report.

Safety
The distribution of treatment-related adverse events in the two arms is shown in Table 2. The most common racotumomab-related adverse events (all grades) were burning (41.9%) and pain at the injection site (33.7%), followed by bone pain (18.6 %) and asthenia (16.3%). In the placebo group, the most frequently reported adverse events were burning (31.3%) and pain at the injection site (24.7%), as well as bone pain (19.1%).

All but 4 treatment-related adverse events were classified as mild or moderate. Two racotumomab-attributed adverse events consisting on asthenia and bone pain were classified as grade 3-4 while 2 patients in the placebo arm developed grade 3-4 bone pain and dyspnea. Even-though these adverse events were categorized as related with the investigational drug, they might also be associated with the natural course of the lung disease and its metastasis. This needs to be confirmed in a larger study in advanced NSCLC patients.
Overall, racotumomab-alum was very well tolerated and its safety profile was consistent with the previously described [28-30].

The proportion of all adverse events (regardless causality) was not different between treatment groups (Supplementary Table S1). One-hundred fifty-eight (158, 91.8%) patients had at least 1 adverse events of any grade (Supplementary Table S2). Thirty-four patients (34 patients, 39.5%) in the racotumomab group and 31 (34.8 %) in the placebo arm, experienced serious adverse events (SAE). Four events from each group consisting on dyspnea, asthenia, bone pain and abscess in right upper limb were classified as related to the investigational drug. No patient in the vaccine group and only 1 (1.1%) patient in the placebo group were withdrawn from treatment because of an adverse event. The proportion of serious adverse events was not different between both groups. No adverse events leading to death were related to the treatment.

Immune response induced by racotumomab-alum vaccine

All vaccinated patients developed a high antibody response against racotumomab of IgG isotype. The titers ranged from 1/200 to 1/51200, with a median of 1/6400 (Supplementary Table S3). No reactivity to racotumomab mAb was detected in the patient’s sera from the placebo group, at the lowest serum dilution tested (1/50) (data not shown).

To determine if antibodies induced after vaccination had the same specificity of P3 mAb (Ab1), pre and hyper-immune serum samples were tested for the recognition of NeuGcGM3 ganglioside. An antibody response against NeuGcGM3 was generated in all vaccinated patients (Supplementary Table S3). Twenty-three patients (95.8%) developed antibodies of both IgG and IgM isotypes that bind to NeuGcGM3 by ELISA, while 1 subject (4.2%) elicited only IgM antibodies. None of the patients developed IgG subclass antibodies alone. Titers of up to 1/51200
and 1/6400 for IgM and IgG isotypes respectively, were obtained. No reaction was detected when pre-immune patients’ sera were tested.

Recognition of tumor cells expressing NeuGcGM3 ganglioside.

Next, we evaluated the ability of patient’s sera to recognize the NeuGcGM3 ganglioside in the natural context of tumor cell membranes. Hyper-immune sera from 11 out of 24 patients (45.8%) showed significant binding of antibodies of both isotypes (IgM and IgG) to L1210 cells, compared with the pre-immune sera, ***p<0.0001 Wilcoxon test (Supplementary Table S3 and Fig. 2A, 2B). Seven (29.2%) and 4 patients (16.7%) showed IgM or IgG binding antibodies to L1210 cells. Only the hyperimmune sera from 2 patients (8.3%) were not able to recognize the NeuGcGM3-expressing tumor cell line (Supplementary Table S3). To confirm that antibodies specifically recognized NeuGcGM3 ganglioside on the cell surface, the binding of patients’ serum samples, to L1210 cmah-kd cells, devoid of Neu5Gc-sialoconjugates, was assessed. As is shown in Fig. 2A, sera that bind the native L1210 cells were not able to recognize L1210 cmah-kd cells, suggesting that the antigen recognized may well be a Neu-glycolylated molecule. Binding of IgM and IgG antibodies to L1210 cells, corresponding to 2 representative patients are shown in Fig. 2C, 2D.

Cytotoxic effect of anti-NeuGcGM3 antibodies induced by vaccination with racotumomab-alum

To study whether the antibodies induced in vaccinated patients were capable not only to recognize, but also to kill the NeuGcGM3-expressing cells, patients’ sera were incubated with L1210 cells. Cytotoxicity was evaluated by flow cytometry using the PI exclusion assay. In 18 out of 24 patients (75%), a significant increase in PI incorporation was observed, ***p<0.0001 Wilcoxon test (Supplementary Table S3 and Fig. 3A). Sera cytotoxicity was significantly
reduced when hyper-immune sera were incubated with L1210 *cmah-kd* or with L1210 cells treated with D-threo-PDMP, suggesting that the antigen recognized in the tumor cell membrane is a Neu-glycolylated-glycosphingolipid (Fig. 3A). Histograms of PI-stained cells from 2 representative patients are shown in Fig. 3B.

Immunological response and clinical outcomes of patients

The individual survival data from the 24 vaccinated patients that were sampled for immune response evaluation is shown in Supplementary Table S3. Interestingly, we found that the percentage of IgM recognition (HR 0.97, 95% CI 0.95-0.99, p=0.040) and the cytotoxicity against L1210 cells (HR 0.98, 95% CI 0.96-0.99, p=0.019) were statistically associated with survival. No association was observed when other immunological variables were analyzed. Then, aiming to find a surrogate of patients’ outcome, we looked for the lower recognition and cell death percentage associated with patients’ survival. Better survival was found in patients with IgM antibodies able to recognize at least 20% of L1210 cells (19.30 vs. 7.83 months, HR 0.30, 95% CI 0.11-0.83, p=0.014) or kill at least 25% of the same NeuGcGM3-positive cells (19.50 vs. 8.23 months, HR of 0.26, 95% CI 0.10-0.70, p=0.005). The highest differences were detected using 30% recognition (19.50 vs. 8.23 months; HR 0.26, 95% CI 0.10-0.73, p=0.006) and 30% cell death cut-off (19.63 vs. 8.23 months; HR 0.21, 95% CI 0.08-0.58, p=0.003) (Supplementary Table S4).

Discussion

In this randomized, placebo-controlled study, patients with advanced NSCLC who received racotumomab-alum vaccine as switch maintenance after first-line treatment had a significant survival improvement compared with those who received a placebo.
This study is the first to demonstrate the efficacy of a NeuGc-containing ganglioside anti-idiotype vaccine as switch maintenance therapy for advanced NSCLC. It is noteworthy that most studies designed to find the role of maintenance treatment in advanced NSCLC patients, have shown improvement in PFS [5-14], but only a few demonstrated an impact in OS [6, 7, 9, 14, 15]. Our vaccine improved both, PFS and OS.

The shorter overall survival seen in our trial can be attributed to the lack of second line therapy and the time elapsed between completing first-line chemotherapy and trial enrollment. Additionally, apart from other studies on maintenance [6, 9], our trial involved patients with a worse performance status (PS ≤ 2) and carrying any NSCLC histology.

Several cancer vaccines have been tested for NSCLC, without great success. Belagenpumatucel-L (Lucanix) is an allogeneic whole cell vaccine with a TGF-β2 antisense. Results from a phase III, placebo-controlled clinical trial demonstrated that vaccination did not improve overall survival. Some patients, mainly those randomized within 12 weeks of the completion of chemotherapy, did derive some survival benefit [42]. L-BLP25 (Stimuvax) is a second cancer vaccine in development for advanced NSCLC, which targets aberrantly glycosylated MUC1. Phase III START study recently failed to reach its primary endpoint of improving overall survival of patients with stage III NSCLC. Only patients that received concurrent chemoradiotherapy before vaccination had a significant survival increase [43]. In both cases, new studies should be done to demonstrate vaccine efficacy. On the other hand, preliminary data from a Phase III trial evaluating an EGF-based vaccine, suggested that vaccination significantly improved survival of advanced NSCLC patients. Subjects with higher baseline EGF concentration in serum, derived the greatest benefit [44]. Final results from this Phase III are still pending.
Better survival with racotumomab-alum was not associated with an increase in adverse events as compared to placebo. Although patients received repeated injections with racotumomab-alum vaccine, the most common adverse events were classified as mild or moderate, confirming our former results on safety [28-30, 32].

Our group have previously reported the induction of an antibody response against NeuGcGM3 ganglioside in breast, melanoma, SCLC and NSCLC patients treated with the racotumomab-alum vaccine [28, 29, 32, 33]. In the present study, we confirmed the immunogenicity of this anti-idiotype vaccine. Racotumomab-alum elicited antibodies specific to the NeuGcGM3 ganglioside and most patients developed high titers of both IgM and IgG isotypes. This is a very relevant result taking into account the general lower immunogenicity of carbohydrates [45, 46]. This high antibody response against NeuGcGM3 can be explained by the unique properties of NeuGc-containing gangliosides, which are non-self-antigens in humans, as the result of the inactivation of the gene encoding the enzyme responsible for NeuGc-conjugates synthesis [19, 20]. The selective expression of NeuGc-gangliosides in tumors appears to originate from exogenous sources [47, 48], and various authors have proposed that tumor hypoxia induces the transcription of a sialin-transporter that facilitates the incorporation of NeuGc-units into tumor gangliosides [48]. Recent reports described the unexpected presence of naturally occurring anti-NeuGcGM3 antibodies, with anti-tumor potential in healthy donors [39]. However, the same team found reduced levels of circulating anti-NeuGcGM3 antibodies in non-treated NSCLC patients, attributed to the inhibition of the specific antibody-secreting B-cell population, or the formation of immune complexes with the NeuGcGM3 released from tumor cells [39]. It has been proposed that idiotypic vaccination is able to boost this natural immune response in cancer patients.
The current clinical study was designed to evaluate the clinical effect of racotumomab vaccine in NSCLC and to define the surrogate value of the antibodies induced after vaccination. In our set, anti-NeuGGM3 antibodies were able to recognize and kill the NeuGcGM3-expressing cell line L1210, confirming the previously reported results [33]. More recently, it was proposed that anti-NeuGcGM3 antibodies elicited by racotumomab, induced death by an oncotic-necrosis mechanism, independent of complement activation [41]. In the current study, we confirmed that the binding and cytotoxicity on L1210 cells was dependent on the presence of NeuGcGM3 in the cell membrane because the hyper-immune sera did not recognize or destroy L1210 cells lacking NGcGM3 expression.

Several clinical trials using anti-idiotype vaccines in cancer patients have reported a correlation between survival and the immune response against the nominal antigen [33, 49]. To our knowledge this is the first report showing an association between the functional capacity of the anti-NeuGcGM3 antibodies elicited after vaccination and the survival. These preliminary results need to be validated in a larger series of patients. Although the mechanism of action of racotumomab seems to be associated with the induction of cytotoxic antibodies capable to kill NeuGcGM3 expressing cells, others mechanisms cannot be ruled-out. In fact, there are preclinical evidences of the link between tumor infiltrating T cells and the anti-metastatic and pro-apoptotic effect of the vaccine [31]. A specific NeuGcGM3 IFNγ response was also found in metastatic breast cancer patients treated with racotumomab [34]. In the forthcoming trials, immunological studies should be done to define the capacity of the racotumomab to activate the cellular immunity.

In conclusion, the results of the present study support the safety and efficacy of racotumomab-alum as switch maintenance for patients with advanced NSCLC. This study suggests the value of
anti-idiotype immunization to generate vigorous serological responses in situations where tumor-associated antigens are poorly immunogenic. The impact of using racotumomab as switch maintenance followed by second line therapy is currently being explored in a new randomized, multinational phase III study (ClinicalTrials.gov identifier: NCT01460472). In this trial, advanced NSCLC patients that progress on racotumomab, may receive pemetrexed, docetaxel or erlotinib, at physician prescription.

Authors' Contributions

Conception and design: A. E. Macías, A. M. Vázquez, S. Alfonso, I.C. Mendoza, D. Toledo, R. Pérez, P. P. Guerra, E. García, T. Crombet.

Clinical investigators (recruited and treated patients): S. Alfonso, E. R. Santiesteban, Y. I. Flores, F. Areces, R.O. Ortiz, A. V. de la Torre

Immunological assessments: A. Valdés-Zayas, D. Toledo, Z. González, Z. Mazorra

Trial conduction and supervision: A. E. Macías, S. Alfonso, K. Pérez, M. Cepeda, E. Chong, T. Crombet, P. P. Guerra, E. García I.C. Mendoza

Writing and or/revision of the manuscript: A. Valdés-Zayas, S. Alfonso, M. Hernández, A. M. Vázquez, A.M. Hernández, Z. Mazorra, A. E. Macías, T. Crombet.

Potential Conflicts of Interest

A.M. Vázquez, A. E. Macías and R. Pérez are inventors of patents related with racotumomab; however, they have assigned their rights to the assignee Center of Molecular Immunology. All other authors declare that they have no conflicts of interest.
Acknowledgments

The trial was funded by the Center of Molecular Immunology and Recom-Bio S.L. We thank all the participating patients, their families and staffs of all the institutions involved in this study. We thank Dr. Thomas Rothstein for critically reviewing the manuscript.
References

7. Fidias PM, Dakhil SR, Lyss AP, Loesch DM, Waterhouse DM, Bromund JL et al. Phase III study of immediate compared with delayed docetaxel after front-line therapy with...

11. Kabbinavar FF, Miller VA, Johnson BE, O'Connor PG, Soh C. Overall survival (OS) in ATLAS, a phase IIIb trial comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy (chemo) with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 2010; 28:15s(Suppl.; abstr 7526).

Fig. 1. Intent to treat OS (A) and PFS (B) in patients with advanced NSCLC receiving racotumomab-alum vaccine or placebo.

Fig. 2. Binding of preimmune and hyperimmune sera from 24 NSCLC vaccinated patients to the NeuGcGM3-expressing cell line L1210. Recognition assay was performed by incubating the 1/10 diluted sera with L1210 cells or with L1210 cmah-kd cells, devoid of NeuGc-sialoconjugates. The reaction was developed with FITC-conjugated anti-human IgM (A) or IgG (B). Bars indicate median values. A significant increment in the median binding to L1210, of IgM and IgG hyper-immune antibodies as compared to the pre-immune sera, was observed (** p<0.001, Wilcoxon test). Binding was affected when sera were incubated with L1210 cmah-kd cells, deficient of NeuGc-sialoconjugates, confirming that the recognized antigen is presumably a NeuGc-glycosphingolipid. (C), (D) Flow cytometric assay from 2 representative patients, showing both isotypes’ binding to L1210. The numbers represent the percentage of positive cells after subtracting the binding of preimmune sera.

Fig. 3. Cytotoxicity induced by sera from 24 NSCLC vaccinated patients, on the NeuGcGM3-expressing L1210 cell line. Cells were incubated for 3 h at 37°C and 5% CO₂ atmosphere with 1/5 diluted preimmune (blue line) and hyperimmune (red line) sera. The percentage of cell death was measured by PI incorporation assay. (A) Percentage of cell death after incubation of preimmune and hyperimmune sera with the NeuGcGM3-expressing L1210 cells, with L1210 cells transduced with a CMP-Neu5Ac-neuraminic acid hydroxylase gene-specific shRNA (L1210 cmah-kd) or with L1210 cells treated with 10 μmol/l D-threo-PDMP, an inhibitor of glycosphingolipids biosynthesis. Bars indicate median values. A significant increase in the cytotoxic activity of hyperimmune sera over L1210 cells was observed, *** p<0.001, Wilcoxon test. Loss of NeuGc-sialoconjugates or treatment with the inhibitor of glucosylceramide
synthetase inhibited cytotoxicity, confirming that the antigen recognized is an N-glycolilated-glycosphingolipid. (B) Histograms of PI-stained cells from two representative patients. The numbers represent the percentage of positive cells after subtracting the lysis of preimmune sera.

Fig.4. Overall survival according functional capacity of the anti-NeuGcGM3 antibodies elicited after racotumomab-alum vaccination. (A) Survival of patients with IgM antibodies binding \geq 30% (red line) vs. < 30% (blue line) to L1210 cells. (B) Survival of patients with cytotoxic antibodies killing 30% or more (red line) L1210 cells, vs. patients with less than 30% lysis (blue line).

Table 1. Demographic and baseline characteristics.

Table 2. Treatment-related adverse events recorded in at least 1.5% in either group.

Supplementary Fig. S1. CONSORT study diagram.

Supplementary Fig. S2. Overall survival HRs (racotumomab over placebo) in subgroups according to baseline characteristics. Subgroups with less than 14 patients were excluded from the analysis. ECOG PS= Eastern Cooperation Oncology Group performance status. HR= hazard ratio. CR= complete response. PR= partial response. SD= stable disease.

Supplementary Table S1. Adverse event severity.

Supplementary Table S2. Summary of adverse events.

Supplementary Table S3. Number of doses received, maximal titer and isotype analysis against Racotumomab-mAb and NeuGeGM3, percentages of binding and cytotoxicity against L1210 cells, and survival times in vaccinated NSCLC patients.

Supplementary Table S4. Association of antibody response with patient’s survival.
Supplementary Table S5. Association of functional capacity of elicited anti-NeuGcGM3 antibodies with patient’s survival.
A) Cumulative survival over time for Racotumomab-alum and Placebo.

- **Racotumomab-alum**
 - Censor rate: 87, 57, 35, 24, 16, 14, 12, 10, 6, 6, 4, 4, 3, 1, 1

- **Placebo**
 - Censor rate: 89, 51, 20, 7, 6, 5, 3, 3, 2, 2, 2, 2, 2, 1

HR 0.63 (95% CI, 0.46-0.87) Log-rank P value = 0.004

Median OS (months):
- Racotumomab-alum 8.23 (95% CI, 5.59-10.87)
- Placebo 6.80 (95% CI, 5.77-7.83)

B) Progression-free survival over time for Racotumomab-alum and Placebo.

- **Racotumomab-alum**
 - Censor rate: 87, 40, 15, 10, 9, 9, 8, 7, 4, 4, 2, 2, 1, 0, 0

- **Placebo**
 - Censor rate: 89, 27, 6, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0

HR 0.73 (95% CI, 0.53-0.99) Log-rank P value = 0.039

Median PFS (months):
- Racotumomab-alum 5.33 (95% CI, 3.48-7.19)
- Placebo 3.90 (95% CI, 3.53-4.27)
Figure 2

(A) IgM serum antibody-reacting cells (%) in preimmune and hyperimmune sera. p < 0.0001.

(B) IgG serum antibody-reacting cells (%) in preimmune and hyperimmune sera. p < 0.0001.

(C) Flow cytometry analysis of IgM binding in patient 17 and patient 124 for L1210 and L1210 cmah-kd cells.

(D) Flow cytometry analysis of IgG binding in patient 17 and patient 124 for L1210 and L1210 cmah-kd cells.

Cells:
- ▲ L1210 wild type
- ▼ L1210 cmah-kd
Figure 3

(A) Cells

- △ L1210
- * L1210 cmah-kd
- ▼ L1210 + D-threo-PDMP

PI positive cells (%)

Preimmune sera

Hyperimmune sera

(B)

L1210

L1210 cmah-kd

L1210 + D-threo-PDMP

Patient 17

Patient 124

Downloaded from clincancerres.aacrjournals.org on May 5, 2014. © 2014 American Association for Cancer Research.
Figure 4

A) Serum IgM binding to NeuGcGM3-expressing L1210 cells

- ≥ 30%
- < 30%

HR 0.26 (95% CI, 0.10-0.73), Log-rank P value = 0.006
Median OS (months), 95% CI
≥ 30% 19.50 (17.31-21.69); < 30% 8.23 (7.20-9.26)

B) Cell death percentage:

- ≥ 30%
- < 30%

HR 0.21 (CI 95% 0.08-0.58), Log-rank P value = 0.001
Median OS (months), 95% CI
≥ 30% 19.63 (11.26-28.00); < 30% 8.23 (7.06-9.40)
<table>
<thead>
<tr>
<th></th>
<th>Racotumomab-alum (n = 87)</th>
<th>Placebo (n = 89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60 years</td>
<td>38 (43.7%)</td>
<td>41 (46.1%)</td>
</tr>
<tr>
<td>≥ 60 years</td>
<td>49 (56.3%)</td>
<td>48 (53.9%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>28 (32.2%)</td>
<td>30 (33.7%)</td>
</tr>
<tr>
<td>Male</td>
<td>59 (67.8%)</td>
<td>59 (66.3%)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>40 (46.0%)</td>
<td>40 (44.9%)</td>
</tr>
<tr>
<td>1</td>
<td>45 (51.7%)</td>
<td>45 (50.6%)</td>
</tr>
<tr>
<td>2</td>
<td>2 (2.3%)</td>
<td>4 (4.5%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>70 (80.5%)</td>
<td>71 (79.8%)</td>
</tr>
<tr>
<td>Afro-Caribbean</td>
<td>11 (12.6%)</td>
<td>13 (14.6%)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (6.9%)</td>
<td>5 (5.6%)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>16 (18.45%)</td>
<td>19 (21.3%)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>67 (77.0%)</td>
<td>65 (73.0%)</td>
</tr>
<tr>
<td>Non smoker</td>
<td>4 (4.6%)</td>
<td>5 (5.6%)</td>
</tr>
<tr>
<td>Tumor Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>33 (37.9%)</td>
<td>33 (37.1%)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>25 (28.7%)</td>
<td>31 (34.8%)</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>18 (20.7%)</td>
<td>14 (15.7%)</td>
</tr>
<tr>
<td>NSCLC NOS*</td>
<td>11 (12.6%)</td>
<td>11 (12.4%)</td>
</tr>
<tr>
<td>Disease Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIB</td>
<td>48 (55.2%)</td>
<td>51 (57.3%)</td>
</tr>
<tr>
<td>IV</td>
<td>39 (44.8%)</td>
<td>38 (42.7%)</td>
</tr>
<tr>
<td>First-line Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>87 (100%)</td>
<td>89 (100%)</td>
</tr>
<tr>
<td>RT</td>
<td>50 (57.5%)</td>
<td>51 (57.3%)</td>
</tr>
<tr>
<td>First line chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum compounds</td>
<td>87 (100%)</td>
<td>89 (100%)</td>
</tr>
<tr>
<td>Cisplatin/Vinblastine</td>
<td>28 (33.3%)</td>
<td>18 (20.9%)</td>
</tr>
<tr>
<td>Cisplatin/Etoposide</td>
<td>6 (7.1%)</td>
<td>5 (5.8%)</td>
</tr>
<tr>
<td>Carboplatin/Vinblastine</td>
<td>39 (46.4%)</td>
<td>50 (58.1%)</td>
</tr>
<tr>
<td>Carboplatin/Etoposide</td>
<td>11 (13.1%)</td>
<td>13 (15.1%)</td>
</tr>
<tr>
<td>Response to first-line treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>2 (2.3%)</td>
<td>5 (5.6%)</td>
</tr>
<tr>
<td>PR</td>
<td>38 (43.7%)</td>
<td>51 (57.3%)</td>
</tr>
<tr>
<td>SD</td>
<td>47 (54.0%)</td>
<td>33 (37.1%)</td>
</tr>
</tbody>
</table>

ECOG = Eastern Cooperative Oncology Group. Data are n (%). * Non-small cell lung cancer, not otherwise specified.
Table 2: Treatment-related adverse events recorded in at least 1.5% in either group.

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Racotumomab-alum (n=86)</th>
<th>Placebo (n=89)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All grades</td>
<td>Grade 3-4</td>
</tr>
<tr>
<td>Burning in injection site</td>
<td>36 (41.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Pain in injection site</td>
<td>29 (33.7%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Bonepain</td>
<td>16 (18.6%)</td>
<td>1 (1.1%)</td>
</tr>
<tr>
<td>Cough</td>
<td>7 (8.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>5 (5.8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>14 (16.3%)</td>
<td>1 (1.2%)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>6 (7.0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Expectoration</td>
<td>1 (1.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Induration</td>
<td>10 (11.6%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (9.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>9 (10.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Fever</td>
<td>8 (9.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Increased volume in injection site</td>
<td>9 (10.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Local erythema</td>
<td>11 (12.8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>5 (5.8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>5 (5.8%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Data are number of patients (%). Adverse events graded by CTCAE version 3.0.